
Review #3
The Multikernel: A new OS architecture for scalable multicore systems
A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, A. Singhania

ACM SIGOPS 22nd symposium on Operating systems principles, 2009

Jean-Pierre Lozi

April 30, 2010

1 Problem
Commodity computer systems containing multiple cores and/or processors are becoming more and
more common. Most mainstream OSes have historically been developed for monoprocessors or multi-
processors having a limited number of processing units, using a model that scaled well in this context
(global structures with locks, communication via shared memory, etc.). This model however has dif-
ficulties scaling well with newer hardware due to contention. Given the increasing number of cores
in modern architectures and the complexity of interconnections between processing units, computer
systems resemble more and more medium-scale distributed systems: designing an OS like an actual
distributed system could improve scalability.

Newer architectures are also getting increasingly diverse (memory hierarchies, instruction sets, inter-
connects, etc.). However, OSes have been statically optimized for the most common architectures at
a low level for now. The authors argue that given the varying nature of workloads and the diversity
of hardware designs in modern computer systems, this approach will not be efficient enough anymore.
They explain that designing OSes like distributed computer systems allows them to adapt better to
various architectures, just like network applications are able to dynamically adapt to architecturally
diverse networks.

2 Solution
A Multikernel is a new type of operating system that aims to address the problems discussed above.
Multikernels are multithreaded, with an instance of the OS running on each available core. Cores do
not share global structures as in a traditional OS; instead, the OS state is replicated on each one of
them. Cores do not communicate via shared memory, relying on cache coherence algorithms; instead,
all communication is explicit and happens through asynchronous messaging. Multikernels are also
mostly hardware-independent. The only two architecture-specific modules are the messaging transport
mechanism and the interfaces to the hardware (CPUs/cores and devices).

The authors wrote an experimental version of a Multikernel named Barrelfish. In Barrelfish, a CPU
driver and a monitor are bound to each core. CPU drivers handle system calls, schedule processes
and threads on their cores and perform other low-level core-bound operations. Monitors are processes
running on each core that coordinate the system-wide state via messages and encapsulate most of the
higher-level functions that are usually found in a traditional kernel. Barrelfish uses a knowledge database
containing information regarding the underlying hardware (found by polling and measurements) that
it uses to optimize its communication scheme. This database can be used to select appropriate message
transports for inter-core communication or to allow for NUMA-aware memory allocation, for instance.

The ability to send messages from one process to another within the same core or across cores is



provided to user applications. However, applications can also communicate through shared memory
like in a regular OS.

3 Performance
The authors performed experiments to evaluate the performance of Barrelfish’s basic capabilities. They
focused on the OS’ handling of concurrency, messaging, computation and I/Os.

They showed that the performance of their messaging facilities was comparable to L4’s IPCs, which is
rather good even though L4 is not a fully-fledged, widly used microkernel. Performing a TLB shootdown
(i.e. invalidating pages in the Translation Lookaside Buffer) and therefore unmapping pages was much
faster on Barrelfish than on traditional OSes when the underlying hardware used more than 14 cores on
their test configuration, showing Barrelfish’s greater scalability in this context. Their experiments also
showed that Barrelfish is faster than Linux for sending/receiving messages through the IP loopback
(these tasks involve the messaging, buffering and networking subsystems of the OS). More experiments
showed that Barrelfish has a comparable performance to that of Linux for compute-bound and IO
workloads.

4 Benefits
Even though Barrelfish is an experimental OS, its performance rivals that of classical, highly-optimized
OSes on computer systems that have a large number of cores, which tends to show that the Multikernel
approach effectively delivers in terms of scalability. Traditional OSes may have not been optimized for
these systems yet though, so we cannot be sure they will not scale well.

Given the maturity of mainstream OSes, rewriting one from scratch could be a daunting task, but
Multikernels are fairly minimal (like microkernels or exokernels). Moreover, even though Multikernels
are very different from traditional OSes on an architectural level, legacy applications can still run on
them using traditional IPCs: user applications would not have to be redeveloped for a multikernel to
become mainstream.

Therefore, if Multikernels effectively prove much more scalable than traditional kernels on the long
run, they could overcome them in the future.

5 Shortcomings
Since all communication between cores is explicit in Multikernels, their development could prove ex-
tremely complex, especially since programming with asynchronous messages requires an event-driven
approach. For Multikernels to be successful, they would have to prove much more scalable than
traditional OSes, which is not clear: for instance, efficient algorithms would be needed to optimize
communication between cores, and those used in traditional distributed systems may not be applica-
ble.

Also, Multikernels are, in many respects, similar to microkernels, in particular regarding the copious
amount of message passing required between user-space components. This caused a performance imped-
iment which hindered the development of microkernels. The same problem could prevent Multikernels
from being more than experimental proofs of concept.


